Line

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255

Loc

0000
0000
0003
0006
0009
0ooc
000F
0012
0015
0018
001B
001E
0021
0024
0027
002A
002D
0030
0033
0036
0039

1039
103C
103F
1042
1045
1048
104B
104E
1051
1054
1057
105A
105D
105E

1061
1064
1067
106A
106D
1070
1073
1076
1079

Source statement

CopY
FIRST
CLOOP

ENDFIL

THREE
ZERO
RETADR
LENGTH
BUFFER

EXIT

INPUT
MAXLEN

OUTPUT

START
STL
JSUB
LDA
COMP
JEQ
JSUB
J
LDA
STA
LDA
STA
JSUB
LDL
RSUB
BYTE
WORD
WORD
RESW
RESW
RESB

Loaders and Linkers

Object code

140033
481039
000036
280030
300015
481061
3C0003
00002A
0C0039
00002D
0C0036
481061
080033
4C0000
454F46
000003
000000

SUBROUTINE TO READ RECORD INTO

LDX
LDA
™
JEQ
RD
COMP
JEQ
STCH
TIX
JLT
STX
RSUB
BYTE
WORD

SUBROUTINE TO WRITE RECORD FROM BUFFER

ZERO
ZERO
INPUT
RLOOP
INPUT
ZERO
EXIT
BUFFER, X
MAXT.EN
RLOOP
LENGTH

X'Fl’
4096

ZERO
OUTPUT
WLOOP
BUFFER, X
OUTPUT
LENGTH
LOOP

X’05’
FIRST

040030
000030
E0105D
30103F
D8105D
280030
301057
548039
2C105E
38103F
100036
4C0000
Fl

001000

040030
E01079
301064
508039
DC1079
2C0036
381064
4C0000
05

BUFFER

Figure 3.7 Relocatable program for a standard SIC machine.

139

140

EFOPY

System Software

00000001074

BpOOOOQJEFFCl6003%&8103%900039?8003@;0001%&8106k3c000%90002Q9C003%POOOZD
BPOOOI%e3E000C003@€8106598003%ﬁCO00@&54F4§p00002900000
gpolOB%lEFFCO&OO3Q@OOO3g@O105@90103§P8l052@8003@?0105%}4803%?C105%@8103F

290105a9A80010003qéC0009?3901000

390106%l9FE004003QF0107%?01065;0803%PC107%?C003@@8106$§C000gp5
QPOOOOO

Figure 3.8 Object program with relocation by bit mask.

this mask is represented (in character form) as three hexadecimal digits. These
characters are underlined for easier identification in the figure.

If the relocation bit corresponding to a word of object code is set to 1, the
program’s starting address is to be added to this word when the program is
relocated. A bit value of 0 indicates that no modification is necessary. If a Text
record contains fewer than 12 words of object code, the bits corresponding to
unused words are set to 0. Thus the bit mask FFC (representing the bit string
111111111100) in the first Text record specifies that all 10 words of object code
are to be modified during relocation. These words contain the instructions cor-
responding to lines 10 through 55 in Fig. 3.7. The mask E00 in the second Text
record specifies that the first three words are to be modified. The remainder of
the object code in this record represents data constants (and the RSUB instruc-
tion) and thus does not require modification.

The other Text records follow the same pattern. Note that the object code
generated from the LDX instruction on line 210 begins a new Text record even
though there is room for it in the preceding record. This occurs because each
relocation bit is associated with a 3-byte segment of object code in the Text
record. Any value that is to be modified during relocation must coincide with
one of these 3-byte segments so that it corresponds to a relocation bit. The
assembled LDX instruction does require modification because of the direct
address. However, if it were placed in the preceding Text record, it would not
be properly aligned to correspond to a relocation bit because of the 1-byte data
value generated from line 185. Therefore, this instruction must begin a new
Text record in the object program.

You should carefully examine the remainder of the object program in
Fig. 3.8. Make sure you understand how the relocation bits are generated by
the assembler and used by the loader. SIC relocation loader algorithm is
shown in Fig. 3.9.

Some computers provide a hardware relocation capability that elimi-
nates some of the need for the loader to perform program relocation. For
example, some such machines consider all memory references to be relative to

Loaders and Linkers

begin
get PROGADDR from operating system
while not end of input do
begin
read next record
while record type # 'E' do
while record type = 'T'
begin
get length = second data
mask bits(M) as third data
For(i = 0, i < length, i++)
if M, = 1 then

141

add PROGADDR at the location PROGADDR + specified

address
else

move object code from record to location PROGADDR +

specified address
read next record
end
end
end

Figure 3.9 SIC relocation loader algorithm.

the beginning of the user’s assigned area of memory. The conversion of these
relative addresses to actual addresses is performed as the program is executed.
(We discuss this further when we study memory management in Chapter 6.)
As the next section illustrates, however, the loader must still handle relocation
of subprograms in connection with linking,.

3.2.2 Program Linking

The basic concepts involved in program linking were introduced in
Section 2.3.5. Before proceeding you may want to review that discussion and
the examples in that section. In this section we consider more complex exam-
ples of external references between programs and examine the relationship
between relocation and linking. The next section gives an algorithm for a link-
ing and relocating loader.

Figure 2.15 in Section 2.3.5 showed a program made up of three control sec-
tions. These control sections could be assembled together (that is, in the same
invocation of the assembler), or they could be assembled independently of one
another. In either case, however, they would appear as separate segments of
object code after assembly (see Fig. 2.17). The programmer has a natural

142

System Software

inclination to think of a program as a logical entity that combines all of the
related control sections. From the loader’s point of view, however, there is no
such thing as a program in this sense—there are only control sections that are
to be linked, relocated, and loaded. The loader has no way of knowing (and no
need to know) which control sections were assembled at the same time.

Consider the three (separately assembled) programs in Fig. 3.10, each of
which consists of a single control section. Each program contains a list of items
(LISTA, LISTB, LISTC); the ends of these lists are marked by the labels ENDA,
ENDB, ENDC. The labels on the beginnings and ends of the lists are external
symbols (that is, they are available for use in linking). Note that each program
contains exactly the same set of references to these external symbols. Three of
these are instruction operands (REF1 through REF3), and the others are the
values of data words (REF4 through REF8). In considering this example, we
examine the differences in the way these identical expressions are handled
within the three programs. This emphasizes the relationship between the relo-
cation and linking processes. To focus on these issues, we have not attempted
to make these programs appear realistic. All portions of the programs not
involved in the relocation and linking process are omitted. The same applies to
the generated object programs shown in Fig. 3.11.

Consider first the reference marked REF1. For the first program (PROGA),
REF1 is simply a reference to a label within the program. It is assembled in the
usual way as a program-counter relative instruction. No modification for relo-
cation or linking is necessary. In PROGB, on the other hand, the same operand
refers to an external symbol. The assembler uses an extended-format instruc-
tion with address field set to 00000. The object program for PROGB (see
Fig. 3.11) contains a Modification record instructing the loader to add the
value of the symbol LISTA to this address field when the program is linked.
This reference is handled in exactly the same way for PROGC.

The reference marked REF2 is processed in a similar manner. For PROGA,
the operand expression consists of an external reference plus a constant, The
assembler stores the value of the constant in the address field of the instruc-
tion and a Modification record directs the loader to add to this field the value
of LISTB. In PROGB, the same expression is simply a local reference and is
assembled using a program-counter relative instruction with no relocation or
linking required.

REF3 is an immediate operand whose value is to be the difference between
ENDA and LISTA (that is, the length of the list in bytes). In PROGA, the assem-
bler has all of the information necessary to compute this value. During the
assembly of PROGB (and PROGC), however, the values of the labels are
unknown. In these programs, the expression must be assembled as an external
reference (with two Modification records) even though the final result will be an
absolute value independent of the locations at which the programs are loaded.

Loc

0000

G020
3023
-

027

3040

0054
0054
0057
JUDA
005D
0060

Loc

0000

0036
003A
003D

0060

0070
0070
3073
0076
0079
007C

PROGA

REF1
REFZ
REF3

ENDA
REF4
REFS
REF6
REF7
REF8

PROGB

REF1
REFZ
REF3

LISTB

ENDB
REF4
REF5
REF6
REF7
REF8

Source statement

START
EXTDEF
EXTREF

LDA
+1L.DT
LDX

0
ISTA, ENDA
ISTB, ENDB, LISTC, ENDC

T
pu]
T

i

LISTA
LISTB+4
#ENDA-LISTA

*

ENDA-LISTA+LISTC
ENDC-LISTC-10
ENDC-LISTC+LISTA-1
ENDA-LISTA- (ENDB-LISTB)
LISTB-LISTA

REF1

Source statement

START

0

EXTDEF LISTB, ENDB
EXTREF LISTA, ENDA, LISTC, ENDC

+LDA
LDT
+LDX

éQU

EQU

VIORD
WORD
WORD
WORD
WORD
END

LISTA
LISTB+4
#ENDA-LISTA

*

ENDA-LISTA+LISTC
ENDC-LISTC-10
ENDC-LISTC+LISTA-1
ENDA-LISTA- (ENDB-LISTB)
LISTB-LISTA

Loaders and Linkers

Object code

03201D
77100004
050014

000014
FFFFF6
00003F
000014
FFFFCO

Object code

03100000
772027
05100000

000000
FFFFF6
FFFFFF
FFFFF0
000060

Figure 3.10 Sample programs illustrating linking and relocation.

143

144

System Software

Loc Source statement

6000 PROGC START o]
EXTDEF LISTC, ENDC
EXTREF LISTA,ENDA, LISTB, ENDB

0018 REF1 +LDA LISTA
001C REF2 +LDT LISTB+4
0020 REF3 +L.DX #ENDA-LISTA

0030 LISTC EQU *

0042 ENDC EQU *
0042 REF4 WORD ENDA-LISTA+LISTC
0045 REF5 WORD ENDC-LISTC-10
0048 REF6 WORD ENDC-LISTC+LISTA-1
004B REF7 WORD ENDA-LISTA- (ENDB-LISTB)
004E REF8 WORD LISTB-LISTA

END

Figure 3.10 (cont'd)

HPROGA 000000000063
BLISTA DOCO4OENDA D00054
RLISTB ENDB LISTC ENDC

L]

L]
T0000200A03201D77100004050014
L]

TO000540E000014FFFFF600003E000014FFFFCO
M00002405+LISTB
MDO005406+LISTC
0005706+ENDC
M000057,06-LISTC
0005AD6+ENDC
0005AD6-LISTC
00005406+ PROGA
:booos 6,-ENDB
M00005D06+LISTB
0006006+L1STB
M00006006-PROGA
E000020

Figure 3.11 Object programs corresponding to Fig. 3.10.

Object code

03100000
77100004
05100000

000030
000008
000011
000000
000000

Loaders and Linkers

HPROGB 00000000007F
DLISTB 0006QENDB 000070
KLISTA ENDA ,LISTC JENDC

[]

. .
TA000036AOBA03100000/\772027/\05100000
L]

L]

TA000079\01?,\000009\171?1?!-‘P6APFFFF§\FPFPPq\000060
0
A

0003705+LISTA
0003EQ0S+ENDA
0003EDS-LISTA
00070 6+ENDA
0007 oé}LIsrA
0007606+LISTC

0007306+ENDC
0007306-LISTC
0007606+ENDC
0007606-LISTC
00076} ZénxsrA
0007§£§@BNDA
0007406 L1STA
0007 GO6+PROGB
0007606-LISTA

HPROGC 00000000005
DLISTC 00003GENDC 000042
ELISTA ENDA LISTB ENDB

L]

T0000180€031000007710000405100000

70000420£00003600000490001 4000000900000
0001909 +LISTA
0001BOS+LISTS
0002 0S+ENDA
00021D5-LISTA
0004206+ENDA
MD0004Z06-LISTA
0004206+PROGC
0004806+LISTA
MD0004 BO6+ENDA
MD0004BD6-LISTA
¥00004806-ENDB
MD0004BOGFLISTB
0004EQ6+LISTB
MO0004EQ6-LISTA
E

Figure 3.11 (cont'd)

The remaining references illustrate a variety of other possibilities. The
general approach taken is for the assembler to evaluate as much of the expres-
sion as it can. The remaining terms are passed on to the loader via Modifica-
tion records. To see this, consider REF4. The assembler for PROGA can

146

System Software

evaluate all of the expression in REF4 except for the value of LISTC. This
results in an initial value of (hexadecimal) 000014 and one Modification record.
However, the same expression in PROGB contains no terms that can be evalu-
ated by the assembler. The object code therefore contains an initial value of
000000 and three Modification records. For PROGC, the assembler can supply
the value of LISTC relative to the beginning of the program (but not the actual
address, which is not known until the program is loaded). The initial value of
this data word contains the relative address of LISTC (hexadecimal 000030).
Modification records instruct the loader to add the beginning address of the
program (i.e., the value of PROGC), to add the value of ENDA, and to subtract
the value of LISTA. Thus the expression in REF4 represents a simple external
reference for PROGA, a more complicated external reference for PROGB, and
a combination of relocation and external references for PROGC.

You should work through references REF5 through REFS for yourself to be
sure you understand how the object code and Modification records in Fig. 3.11
were generated. s

Figure 3.12(a) shows these three programs as they might appear in mem-
ory after loading and linking. PROGA has been loaded starting at

Memory
address Contents
0000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
L] L] * *
L] L] L] * [
L] [] * *
3FF0 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
4000 [eeeeeens cecestee essessss sesssss .
4010 vesesess sesessse esessses teesnanas
4020 03201D77 1040C705 001l4....eee.le—PROGA
4030 cesecrss esseeans cecessse sesceesse
4040 tecesese essseses ceeesesse sesssees
4050 reesesne 00412600 00080040 51000004
4060 000083f.. .eveveene seovevnns sesae e
4070 |.ieeeene e teeecsee ssesssss asssssss
4080 cesesers seessses seesesss ceecanss
4090 feceens es seeesses +.031040 40772027

40A0 |05100014 +ovvnvns vueveess enees... [+~ PROGB
40BO [....... C eeeeree eeeeeene eeeaeeen
G0CO [eenuernn teiirene teiieren eeneeenn
4000 |......00 41260000 08004051 00000400
40E0 (0083 0. ...ievi. sieeiere aeeeeees
40FO [oeveveer weeeeens0310 40407710
4100 [40C70510 0014....e. +u....../¢—PROGC

4110 sesesess cesssses saseses ceeesene

4120 feeeeeaen 00412600 00080040 51000004
4130 000083xx XXXXXXXX XXXXXXXX XXXXXXXX
4140 - XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

. I o . o : .

. L[] L e L]

. LI . L] .

Figure 3.12(a) Programs from Fig. 3.10 after linking and loading.

Loaders and Linkers
Object programs Memory contents
PROGA |HPROGA e 0000
. (REF4) 4
° (REF4)

: 1
: |
P
1§
PROGC | Hf cose
5/
/: —’,
/| pETepe00ss——1
/ (Actual address
// : of LISTC)
/
" Load addresses
\ PROGA 004000
\\ PROGB 004063
oD
Figure 3.12(b) Relaxation and linking operations performed on REF4
from PROGA.

address 4000, with PROGB and PROGC immediately following. Note that
each of REF4 through REF8 has resulted (after relocation and linking is
performed) in the same value in each of the three programs. This is as it
should be, since the same source expression appeared in each program.

For example, the value for reference REF4 in PROGA is located at
address 4054 (the beginning address of PROGA plus 0054, the relative
address of REF4 within PROGA). Figure 3.12(b) shows the details of how
this value is computed. The initial value (from the Text record) is 000014. To
this is added the address assigned to LISTC, which is 4112 (the beginning
address of PROGC plus 30). In PROGB, the value for REF4 is located at rela-
tive address 70 (actual address 40D3). To the initial value (000000), the
loader adds the values of ENDA (4054) and LISTC (4112), and subtracts the

value of LISTA (4040). The result, 004126, is the same as was obtained in

PROGA. Similarly, the computation for REF4 in PROGC results in the same
value. The same is also true for each of the other references REF5 through
REF8.

¥y

148

System Software

For the references that are instruction operands, the calculated values after
loading do not always appear to be equal. This is because there is an addi-
tional address calculation step involved for program-counter relative (or base
relative) instructions. In these cases it is the target addresses that are the same.
For example, in PROGA the reference REF1 is a program-counter relative
instruction with displacement 01D. When this instruction is executed, the pro-
gram counter contains the value 4023 (the actual address of the next instruc-
tion). The resulting target address is 4040. No relocation is necessary for this
instruction since the program counter will always contain the actual (not rela-
tive) address of the next instruction. We could also think of this process as
automatically providing the needed relocation at execution time through the
target address calculation. In PROGB, on the other hand, reference REF1 is an
extended format instruction that contains a direct (actual) address. This
address, after linking, is 4040—the same as the target address for the same ref-
erence in PROGA.

You should work through the details of the other references to see that
the target addresses (for REF2 and REF3) or the data values (for REF5
through REF8) are the same in each of the three programs. You do not need to
worry about how these calculations are actually performed by the
loader because the algorithm and data structures for doing this are discussed
in the next section. It is important, however, that you understand the
calculations to be performed, and that you are able to carry out the computa-
tions by hand (following the instructions that are contained in the object
programs).

3.2.3 Alg'_orithmﬂand Data Structures for a Linking Loader

Now we are ready to present arn algorithm for a linking (and relocating)
loader. We use Modification records for relocation so that the linking and
relocation functions are performed using the same mechanism. As men-
tioned previously, this type of loader is often found on machines (like
SIC/XE) whose relative addressing makes relocation unnecessary for most
instructions. :

The algorithm for a linking loader is considerably more complicated than
the absolute loader algorithm discussed in Section 3.1. The input to such a
loader consists of a set of object programs (i.e., control sections) that are to be
linked together. It is possible (and common) for a control section to make an
external reference to a symbol whose definition does not appear until later in
this input stream. In such a case the required linking operation cannot be per-
formed until an address is assigned to the external symbol involved (that is,

Loaders and Linkers

until the later control section is read). Thus a linking loader usually makes two
passes over its input, just as an assembler does. In terms of general function,
the two passes of a linking loader are quite similar to the fwo_ passes of an
assembler: Pass 1 assigns addresses to all external symbols, and Pass 2 per-
forms the actual loading, relocation, and linking.

The main data structure needed for our linking loader is an external
symbol table ESTAB. This table, which is analogous to SYMTAB in our
assembler algorithm, is used to store the name and address of each external
symbol in the set of control sections being loaded. The table also often indi-
cates in which control section the symbol is defined. A hashed organization
is typically used for this table. Two other important variables are PRO-
GADDR (program load address) and CSADDR (control section address).
- PROGADDR is the beginning address in memory where the linked program
is to be loaded. Its value is supplied to the loader by the operating system.
(In Chapter 6 we discuss how PROGADDR might be generated within the
operating system.) CSADDR contains the starting address assigned to the
control section currently being scanned by the loader. This value is added to
all relative addresses within the control section to convert them to actual
addresses.

The algorithm itself is presented in Fig. 3.13. As we discuss this algorithm,

you may find it useful to refer to the example of loading and linking in the ~

preceding section (Figs. 3.11 and 3.12).

During the first pass [Fig. 3.13(a)], the loader is concerned only wrth’ B

Header and Define record types in the control sections. The beginning load
address for the linked program (PROGADDR) is obtained from the operating
system. This becomes the starting address (CSADDR) for the first control sec-
tion in the input sequence. The control section name from the Header record is
entered into ESTAB, with value given by CSADDR. All external symbols
appearing in the Define record for the control section are also entered into
ESTAB. Their addresses are obtained by adding the value specified in the
Define record to CSADDR. When the End record is read, the control section
length CSLTH (which was saved from, J;he Header record) is added to
CSADDR. This calculation gives the startmg address for the next control sec-
tion in sequence.

At the end of Pass 1, ESTAB contains all external symbols defined in the set
of control sections together with the address assigned to each. Many loaders
include as an option the ability to print a load map that shows these symbols
and their addresses. This information is often useful in program debugging.
For the example in Figs. 3.11 and 3.12, such a load map might look like the
following. This is essentlally the same information containeci in ESTAB at the
end of Pass 1.

149

150

System Software

Control Symbol

section name Address Length

PROGA 4000 0063
LISTA 4040
ENDA 4054

PROGB 4063 007F
LISTB 40C3
ENDB 40D3

PROGC 40E2 0051
LISTC 4112
ENDC 4124

Pass 1:
begin

get PROGADDR from operating system

set CSADDR to PROGADDR {for first control section}

whilq not end of input &

read next input record {Header record for control section}
set CSLTH to control section length
search ESTAB for control section name

if found then

set error flag {duplicate external symbol}

else

enter control section name into ESTAB with value CSADDR

while record type # 'E’ do

begin

read next input record
if record type = ‘D’ them
for each symbol in the record do

begin

search ESTAB for symbol name
if found then
set error flag (duplicate external symbol)

else

enter symbol into ESTAB with value
(CSADDR + indicated address)

end {for}

end {while # 'E’}

add CSLTH to CSADDR {starting address for next control section}

end {while not EOF}

end {Pass 1}

Figure 3.13(a) Algorithm for Pass 1 of a linking loader.

Loaders and Linkers 151

Pass 2:

begin
set CSADDR to PROGADDR
set EXECADDR to PROGADDR
while not end of input do
begin
read next input record {Header record}
set CSLTH to control section length
while record type # 'E’ do
begin
read next input record
" if record type = ‘T’ then
{if object code is in character form, convert
into internal representation}
move object code from record to location
(CSADDR + specified address)

end {if 'T’}
else if record type = ‘M’ then
begin

search ESTAB for modifying symbol name
if found then S
add or subi:act symbol value at location
(CSADDR + spécified addréss) '
. else - ‘
set error flag (undefined external symbol)
end {if 'M’'}
end {while # 'E’}
if an address is specified {in End record}: then
set EXECADDR to (CSADDR + specified address)
add CSLTH to CSADDR
end {while not EOF}
jump to location given by EXECADDR {to start execution of 1oaded program}
end {Pass 2}

Figure 3.13(b) Algorithm for Pass 2 of a linking loader.

Pass 2 of our loader [Fig. 3.13(b)] performs the actual loading, relocation,
and linking of the program. CSADDR is used in the same way it was in
Pass 1—it always contains the actual starting address of the control section
currently being loaded. As each Text record is read, the object code is moved to
the specified address (plus the current value of CSADDR). When a
Modification record is encountered, the symbol whose value is to be used for
modification is looked up in ESTAB. This value is then added to, or subtracted
from the indicated location in memory. -

The last step performed by the loader is usually the transferrmg of control
to the loaded program to begin execution. (On some systems, the address

152

System Software

where execution is to begin is simply passed back to the operating system. The
user must then enter a separate Execute command.) The End record for each
control section may contain the address of the first instruction in that control
section to be executed. Our loader takes this as the transfer point to begin exe-
cution. If more than one control section specifies a transfer address, the loader
arbitrarily uses the last one encountered. If no control section contains a trans-
fer address, the loader uses the beginning of the linked program (i.e.,
PROGADDR) as the transfer point. This convention is typical of those found
in most linking loaders. Normally, a transfer address would be placed in the
End record for a main program, but not for a subroutine. Thus the correct exe-
cution address would be specified regardless of the order in which the control
sections were presented for loading. (See Fig. 2.17 for an example of this.)

You should apply this algorithm (by hand) to load and link the object pro-
grams in Fig. 3.11. If PROGADDR is taken to be 4000, the result should be the
same as that shown in Fig. 3.12.

This algorithm can be made more efficient if a slight change is made in the
object program format. This modification involves assigning a reference number
to each external symbol referred to in a control section. This reference number
is used (instead of the symbol name) in Modification records.

Suppose we always assign the reference number 01 to the control section
name. The other external reference symbols may be assigned numbers as part
of the Refer record for the control section. Figure 3.14 shows the object

ROGA 000000000063
ISTA DOO0O04QENDA 00054
RO2LISTB OSENDB DALISTC OSENDC

T0000200A03201D77100004050014

T0000540E000014FFFFF600003F000014FFFFCO
¥0000240%+02
MP0005406304
0005706405
000570604
0005406405
0005A06-04
MDO005ADE+OT
ooosnoz;'?
0005D06+02
:Soooadbé}"i
¥00006006-01
£p00020

Figure 3.14 Object programs corresponding to Fig. 3.10 usihg refer-
ence numbers for code modification. (Reference numbers are underlined
for easier reading.)

Loaders and Linkers

ROGB 00000000007F
ISTB 000060ENDE 000070
RO2LISTA O3ENDA Q4LISTC QSENDC

T,0000360803100000772027,05100000

T0000700E00000QFFFFF6FFFFFEFFFFF0000060
¥000037,05+02
¥PO003EQ5+03
MD0003EQS5-02
M00007006+03
0007006-02
nbooo7qp6+”T
0007306305
gpooo7;pgroa s
00007606405
0007606-04
0007606402
H’poowg‘o("ws
000790602
14000760 +01

MD0007GO6
E

ROGC 000000000051
DLISTC 0003quDC 00042
& LISTA QO3ENDA Q4LISTB Q5ENDB

-
T0000180G031000007710000405100000

T0000420F000030000008000011000000000000
MD0001905+02

0001D05+04

0002105+03

0002105-0

0004206403

0004206-02

0004206401

0004806402

0004B06+03
ggoooagpc-ﬁi
My oooagps-ﬁ?
M00004BP6+04
ngoooaz 06404

0004E064-02

Figure 3.14 (contd)

programs from Fig. 3.11 with this change. The reference numbers are under-
lined in the Refer and Modification records for easier reading. The common
use of a technique such as this is one reason we included Refer records in our
object programs. You may have noticed that these records were not used in the
algorithm of Fig. 3.13.

153

154

System Software

The main advantage of this reference-number mechanism is that it avoids
multiple searches of ESTAB for the same symbol during the loading of a con-
trol section. An external reference symbol can be looked up in ESTAB once for
each control section that uses it. The values for code modification can then be
obtained by simply indexing into an array of these values. You are encouraged
to develop an algorithm that includes this technique, together with any addi-
tional data structures you may require.

3.3 MACHINE-INDEPENDENT LOADER FEATURES

In this section we discuss some loader features that are not directly related to
machine architecture and design. Loading and linking are often thought of as
operating system service functions. The programmer’s connection with such
services is not as direct as it is with, for example, the assembler during pro-
gram development. Therefore, most loaders include fewer different features
(and less varied capabilities) than are found in a typical assembler.

Section 3.3.1 discusses the use of an automatic library search process for
handling external references. This feature allows a programmer to use stan-
dard subroutines without explicitly including them in the program to be
loaded. The routines are automatically retrieved from a library as they are
needed during linking.

Section 3.3.2 presents some common options that can be selected at the
time of loading and linking. These include such capabilities as specifying alter-
native sources of input, changing or deleting external references, and control-
ling the automatic processing of external references.

3.3.1 Automatic Library Search

Many linking loaders can automatically incorporate routines from a subpro-
gram library into the program being loaded. In most cases there is a standard
system library that is used in this way. Other libraries may be specified by con-
trol statements or by parameters to the loader. This feature allows the pro-
grammer to use subroutines from one or more libraries (for example,
mathematical or statistical routines) almost as if they were a part of the pro-
gramming language. The subroutines called by the program being loaded are
automatically fetched from the library, linked with the main program, and
loaded. The programmer does not need to take any action beyond mentioning
the subroutine names as external references in the source program. On some
systems, this feature is referred to as automatic library call. We use the term °

Loaders and Linkers

library search to avoid confusion with the call feature found in most programming
languages.

Linking loaders that support automatic library search must keep track of
external symbols that are referred to, but not defined, in the primary input to
the loader. One easy way to do this is to enter symbols from each Refer record
into the symbol table (ESTAB) unless these symbols are already present. These
entries are marked to indicate that the symbol has not yet been defined. When
the definition is encountered, the address assigned to the symbol is filled in to
complete the entry. At the end of Pass 1, the symbols in ESTAB that remain
undefined represent unresolved external references. The loader searches the
library or libraries specified for routines that contain the definitions of these
symbols, and processes the subroutines found by this search exactly as if they
had been part of the primary input stream.

Note that the subroutines fetched from a library in this way may them-
selves contain external references. It is therefore necessary to repeat the library
search process until all references are resolved (or until no further resolution
can be made). If unresolved external references remain after the library search
is completed, these must be treated as errors.

The process just described allows the programmer to override the stan-
dard subroutines in the library by supplying his or her own routines. For
example, suppose that the main program refers to a standard subroutine
named SQRT. Ordinarily the subroutine with this name would automatically
be included via the library search function. A programmer who for some rea-
son wanted to use a different version of SQRT could do so simply by includ-
ing it as input to the loader. By the end of Pass 1 of the loader, SQRT would
already be defined, so it would not be included in any library search that
might be necessary.

The libraries to be searched by the loader ordinarily contain assembled or
compiled versions of the subroutines (that is, object programs). It is possible to
search these libraries by scanning the Define records for all of the object pro-
grams on the library, but this might be quite inefficient. In most cases a special
file structure is used for the libraries. This structure contains a directory that
gives the name of each routine and a pointer to its address within the file. If a
subroutine is to be callable by more than one name (using different entry
points), both names are entered into the directory. The object program itself, of
course, is only stored once. Both directory entries point to the same copy of the
routine. Thus the library search itself really involves a search of the directory,
followed by reading the object programs indicated by this search. Some oper-
ating systems can keep the directory for commonly used libraries permanently
in memory. This can expedite the search process if a large number of external
references are to be resolved.

155

156

System Software

The process of library search has been discussed as the resolution of a call
to a subroutine. Obviously the same technique applies equally well to the res-
olution of external references to data items.

3.3.2 Loader Options

Many loaders allow the user to specify options that modify the standard pro-
cessing described in Section 3.2. In this section we discuss some typical loader
options and give examples of their use. Many loaders have a special command
language that is used to specify options. Sometimes there is a separate input
file to the loader that contains such control statements. Sometimes these same
statements can also be embedded in the primary input stream between object
programs. On a few systems the programmer can even include loader control
statements in the source program, and the assembler or compiler retains these
commands as a part of the object program.

We discuss loader options in this section as though they were specified
using a command language, but there are other possibilities. On some systems
options are specified as a part of the job control language that is processed by
the operating system. When this approach is used, the operating system incor-
porates the options specified into a control block that is made available to the
loader when it is invoked. The implementation of such options is, of course,
the same regardless of the means used to select them.

One typical loader option allows the selection of alternative sources of
input. For example, the command

INCLUDE program-name (library-name)

might direct the loader to read the designated object program from a library
and treat it as if it were part of the primary loader input.

Other commands allow the user to delete external symbols or entire con-
trol sections. It may also be possible to change external references within the
programs being loaded and linked. For example, the command

DELETE csect-name

might instruct the loader to delete the named control section(s) from the set of
programs being loaded. The command

CHANGE namel, name2

T ozuers and Liskers

might cause the external symbol namel to be changed to name2 wherever it
appears in the object programs. An illustration of the use of such commands is
given in the following example.

Consider the source program in Fig. 2.15 and the corresponding object
program in Fig. 2.17. There is a main program (COPY) that uses two subpro-
grams (RDREC and WRREC); each of these is a separate control section.
If RDREC and WRREC are designed only for use with COPY, it is likely that
the three control sections will be assembled at the same time. This means that
the three control sections of the object program will appear in the same file (or
as part of the same library member).

Suppose now that a set of utility subroutines is made available on the
computer system. Two of these, READ and WRITE, are designed to perform
the same functions as RDREC and WRREC. It would probably be desirable to
change the source program of COPY to use these utility routines. As a tempo-
rary measure, however, a sequence of loader commands could be used to
make this change without reassembling the program. This might be done, for
example, to test the utility routines before the final conversion is made.

Suppose that a file containing the object programs in Fig. 2.17 is the primary
loader input with the loader commands

INCLUDE READ(UTLIB)
INCLUDE WRITE(UTLIB)
DELETE RDREC, WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE

These commands would direct the loader to include control sections READ
and WRITE from the library UTLIB, and to delete the control sections RDREC
and WRREC from the load. The first CHANGE command would cause all
external references to symbol RDREC to be changed to refer to symbol READ.
Similarly, references to WRREC would be changed to WRITE. The result
would be exactly the same as if the source program for COPY had been
changed to use READ and WRITE. You are encouraged to think for yourself
about how the loader might handle such commands to perform the specified
processing.

Another common loader option involves the automatic inclusion of library
routines to satisfy external references (as described in the preceding section).
Most loaders allow the user to specify alternative libraries to be searched,
using a statement such as

LIBRARY MYLIB

157

158

System Software

Such user-specified libraries are normally searched before the standard system
libraries. This allows the user to use special versions of the standard routines.

Loaders that perform automatic library search to satisfy external references
often allow the user to specify that some references not be resolved in this
way. Suppose, for example, that a certain program has as its main function the
gathering and storing of data. However, the program can also perform an
analysis of the data using the routines STDDEV, PLOT, and CORREL from a
statistical library. The user may request this analysis at execution time. Since
the program contains external references to these three routines, they would
ordinarily be loaded and linked with the program. If it is known that the sta-
tistical analysis is not to be performed in a particular execution of this pro-
gram, the user could include a command such as

NOCALL STDDEV, PLOT, CORREL

to instruct the loader that these external references are to remain unresolved.
This avoids the overhead of loading and linking the unneeded routines, and
saves the memory space that would otherwise be required.

It is also possible to specify that 1o external references be resolved by
library search. Of course, this means an error will result if the program
attempts to make such an external reference during execution. This option is
more useful when programs are to be linked but not executed immediately. It is
often desirable to postpone the resolution of external references in such a case.
In Section 3.4.1 we discuss linkage editors that perform this sort of function.

Another common option involves output from the loader. In Section 3.2.3
we gave an example of a load map that might be generated during the loading
process. Through control statements the user can often specify whether or not
such a map is to be printed at all. If a map is desired, the level of detail can be
selected. For example, the map may include control section names and
addresses only. It may also include external symbol addresses or even a cross-
reference table that shows references to each external symbol.

Loaders often include a variety of other options. One such option is the
ability to specify the location at which execution is to begin (overriding any
information given in the object programs). Another is the ability to control
whether or not the loader should attempt to execute the program if errors are
detected during the load (for example, unresolved external references).

3.4 LOADER DESIGN OPTIONS

In this section we discuss some common alternatives for organizing the loading
functions, including relocation and linking. Linking loaders, as described in

lwouders and Linkers

Section 3.2.3, perform all linking and relocation at load time. We discuss two
alternatives to this: linkage editors, which perform linking prior to load time, and
dynamic linking, in which the linking function is performed at execution time.

Section 3.4.1 discusses linkage editors, which are found on many comput-
ing systems instead of or in addition to the linking loader. A linkage editor
performs linking and some relocation; however, the linked program is written
to a file or library instead of being immediately ioaded into memory. This
approach reduces the overhead when the program is executed. All that is
required at ioad time is a very simple form of reiocaton.

Section 3.4.2 introduces dynamic linking, which uses facilities of the oper-
ating system to load and link subprograms at the time they are first called. By
delaying the linking process in this way, additional flexibility can be achieved.
However, this approach usually involves more overhead than does a linking
loader.

In Section 3.4.3 we discuss bootstrap loaders. Such loaders can be used to
run stand-alone programs independent of the operating system or the system
loader. They can also be used to load the operating system or the loader itself
into memory.

3.4.1 Linkage Editors

The essential difference between a linkage editor and a linking loader is illus-
trated in Fig. 3.15. The source program is first assembled or compiled, produc-
ing an object program (which may contain several different control sections).
A linking loader performs all linking and relocation operations, including
automatic library search if specified, and loads the linked program directly
into memory for execution. A linkage editor, on the other hand, produces a
linked version of the program (often called a load module or an executable
image), which is written to a file or library for later execution.

When the user is ready to run the linked program, a simple relocating
loader can be used to load the program into memory. The only object code
modification necessary is the addition of an actual load address to relative val-
ues within the program. The linkage editor performs relocation of all control
sections relative to the start of the linked program. Thus, all items that need to
be modified at load time have values that are relative to the start of the linked
program. This means that the loading can be accomplished in one pass with
no external symbol table required. This involves much less overhead than
using a linking loader.

If a program is to be executed many times without being reassembled,
the use of a linkage editor substantially reduces the overhead required.
Resolution of external references and library searching are only performed

159

160

System Software

Object Object
program(s) program(s)

> >
; Linking : Linkage
Library loader Library editor
Memory Linked
program
(a)
Relocating
loader
Memory

®)

Figure 3.15 Processing of an object program using (a) linking loader
and (b) linkage editor.

once (when the program is link edited). In contrast, a linking loader searches
libraries and resolves external references every time the program is executed.

Sometimes, however, a program is reassembled for nearly every execution.
This situation might occur in a program development and testing environ-
ment (for example, student programs). It also occurs when a program is used
so infrequently that it is not worthwhile to store the assembled version in a
library. In such cases it is more efficient to use a linking loader, which avoids
the steps of writing and reading the linked program.

The linked program produced by the linkage editor is generally in a form
that is suitable for processing by a relocating loader. All external references are
resolved, and relocation is indicated by some mechanism such as Modification
records or a bit mask. Even though all linking has been performed, informa-
tion concerning external references is often retained in the linked program.
This allows subsequent relinking of the program to replace control sections,
modify external references, etc. If this information is not retained, the linked
program cannot be reprocessed by the linkage editor; it can only be loaded
and executed.

Loaders and Linkers

If the actual address at which the program will be loaded is known in
advance, the linkage editor can perform all of the needed relocation. The
result is a linked program that is an exact image of the way the program will
appear in memory during execution. The content and processing of such an
image are the same as for an absolute object program. Normally, however, the
added flexibility of being able to load the program at any location is easily
worth the slight additional overhead for performing relocation at load time.

Linkage editors can perform many useful functions besides simply prepar-
ing an object program for execution. Consider, for example, a program
(PLANNER) that uses a large number of subroutines. Suppose that one sub-
routine (PROJECT) used by the program is changed to correct an error or to
improve efficiency. After the new version of PROJECT is assembled or com-
piled, the linkage editor can be used to replace this subroutine in the linked
version of PLANNER. It is not necessary to go back to the original (separate)
versions of all of the other subroutines. The following is a typical sequence of
linkage editor commands used to accomplish this. The command language is
similar to that discussed in Section 3.3.2.

INCLUDE PLANNER (PROGLIB)

DELETE PROJECT {DELETE from existing PLANNER}
INCLUDE PROJECT (NEWLIB) {INCLUDE new version}

REPLACE PLANNER (PROGLIB)

Linkage editors can also be used to build packages of subroutines or other
control sections that are generally used together. This can be useful when
dealing with subroutine libraries that support high-level programming lan-
guages. In a typical implementation of FORTRAN, for example, there are a
large number of subroutines that are used to handle formatted input and out-
put. These include routines to read and write data blocks, to block and
deblock records, and to encode and decode data items according to format
specifications. There are a large number of cross-references between these
subprograms because of their closely related functions. However, it is desir-
able that they remain as separate control sections for reasons of program
modularity and maintainability.

If a program using formatted I/O were linked in the usual way, all of the
cross-references between these library subroutines would have to be processed
individually. Exactly the same set of cross-references would need to be processed
for almost every FORTRAN program linked. This represents a substantial
amount of overhead. The linkage editor could be used to combine the appropri-
ate subroutines into a package with a command sequence like the following:

INCLUDE READR (FTNLIB)
INCLUDE WRITER (FTNLIB)

161

162

System Software

INCLUDE BLOCK (FTNLIB)

INCLUDE DEBLOCK (FTNLIB)
INCLUDE ENCODE(FTNLIB)
INCLUDE DECODE (FTNLIB)

SAVE FTNIO (SUBLIB)

The linked module named FTNIO could be indexed in the directory of SUBLIB
under the same names as the original subroutines. Thus a search of SUBLIB
before FTNLIB would retrieve FTNIO instead of the separate routines. Since
FTNIO already has all of the cross-references between subroutines resolved,
these linkages would not be reprocessed when each user’s program is linked.
The result would be a much more efficient linkage editing operation for each
program and a considerable overall savings for the system.

Linkage editors often allow the user to specify that external references are
not to be resolved by automatic library search. Suppose, for example, that
100 FORTRAN programs using the I/O routines described above were to be
stored on a library. If all external references were resolved, this would mean
that a total of 100 copies of FTNIO would be stored. If library space were an
important resource, this might be highly undesirable. Using commands like
those discussed in Section 3.3.2, the user could specify that no library
search be performed during linkage editing. Thus only ihe external references
between user-written routines would be resolved. A linking loader could
then be used to combine the linked user routines with FTNIO at execution
time. Because this process involves two separate linking operations, it would
require slightly more overhead; however, it would result in a large savings
inlibrary space.

Linkage editors often include a variety of other options and commands
like those discussed for linking loaders. Compared to linking loaders, linkage
editors in general tend to offer more flexibility and control, with a correspond-
ing increase in complexity and overhead.

3.4.2 Dynamic Linking

Linkage editors perform linking operations before the program is loaded for
execution. Linking loaders perform these same operations at load time. In this
section we discuss a scheme that postpones the linking function until execu-
tion time: a subroutine is loaded and linked to the rest of the program when it
is first called. This type of function is usually called dynamic linking, dynamic
loading, or load on call.

Loaders and Linkers

Dynamic linking is often used to allow several executing programs to
share one copy of a subroutine or library. For example, run-time support
routines for a high-level language like C could be stored in a dynamic link
library. A single copy of the routines in this library could be loaded into the
memory of the computer. All C programs currently in execution could be
linked to this one copy, instead of linking a separate copy into each object
program.

In an object-oriented system, dynamic linking is often used for references
to software objects. This allows the implementation of the object and its meth-
ods to be determined at the time the program is run. The implementation can
be changed at any time, without affecting the program that makes use of the
object. Dynamic linking also makes it possible for one object to be shared by
several programs, as discussed previously. (See Section 8.4 for an introduction
to object-oriented programming and design.)

Dynamic linking also offers some other advantages over the other types of
linking we have discussed. Suppose, for example, that a program contains
subroutines that correct or clearly diagnose errors in the input data during
execution. If such errors are rare, the correction and diagnostic routines may
not be used at all during most executions of the program. However, if the
program were completely linked before execution, these subroutines would
need to be loaded and linked every time the program is run. Dynamic linking
provides the ability to load the routines only when (and if) they are needed.
If the subroutines involved are large, or have many external references, this
can result in substantial savings of time and memory space.

Similarly, suppose that in any one execution a program uses only a few out
of a large number of possible subroutines, but the exact routines needed can-
not be predicted until the program examines its input. This situation could
occur, for example, with a program that allows its user to interactively call any
of the subroutines of a large mathematical and statistical library. Input data
could be supplied by the user, and results could be displayed at the terminal.
In this case, all of the library subroutines could potentially be needed, but only
a few will actually be used in any one execution. Dynamic linking avoids the
necessity of loading the entire library for each execution. As a matter of fact,
dynamic linking may make it unnecessary for the program even to know the
possible set of subroutines that might be used. The subroutine name might
simply be treated as another input item.

There are a number of different mechanisms that can be used to accom-
plish the actual loading and linking of a called subroutine. Figure 3.16
illustrates a method in which routines that are to be dynamically loaded must
be called via an operating system service request. This method could also be
thought of as a request to a part of the loader that is kept in memory during
execution of the program.

163

164 System Software

Load-and-calt
ERRHANDL

Dynamic
loader

Dynamic
loader
(part of the
operating
system)

User
program

Dynamic
loader

User User
program program
ERRHANDL ERRHANDL
(c) (d)

Dynamic
loader

User
program

ERRHANDL

(b)
Dynamic
loader
Load-and-call
ERRHANDL

User
program

ERRHANDL

(e)

Figure 3.16 Loading and calling of a subroutine using dynamic Iinkiﬁg.

Loaders and Linkers

Instead of executing a JSUB instruction that refers to an external symbol,
the progiam makes a load-and-call service request to the operating system.
The parameter of this request is the symbolic name of the routine to be called.
[See Fig. 3.16(a).] The operating system examines its internal tables to deter-
mine whether or not the routine is already loaded. If necessary, the routine is
loaded from the specified user or system libraries as shown in Fig. 3.16(b).
Control is then passed from the operating system to the routine being called
[Fig. 3.16(c)].

When the called subroutine completes its processing, it returns to its caller
[that is, to the operating system routine that handles the load-and-call service
request). The operating system then teturns control to the program that issued
the request. This process is illustrated in Fig. 3.16(d). It is important that control
be returned in this way so that the operating system knows when the called
routine has completed its execution. After the subroutine is completed, the
memory that was allocated to load it may be released and used for other pur-
poses. However, this is not always done immediately. Sometimes it is desirable
to retain the routine in memory for later use as long as the storage space is not
needed for other processing. If a subroutine is still in memory, a second call to it
may not require another load operation. Control may simply be passed from
the dynamic loader to the called routine, as shown in Fig. 3.16(e).

When dynamic linking is used, the association of an actual address with
the symbolic name of the called routine is not made until the call statement is
executed. Another way of describing this is to say that the binding of the name
to an actual address is delayed from load time until execution time. This
delayed binding results in greater flexibility, as we have discussed. It also
requires more overhead since the operating system must intervene in the call-
ing process. In later chapters we see other examples of delayed binding. In
those examples, too, delayed binding gives more capabilities at a higher cost.

3.4.3 Bootstrap Loaders

In our discussions of loaders we have neglected to answer one important
question: How is the loader itself loaded into memory? Of course, we could
say that the operating system loads the loader; however, we are then left with
the same question with respect to the operating system. More generally, the
question is this: Given an idle computer with no program in memory, how do
we get things started? :

[n this situation, with the machine empty and idle, there is no need for pro-
gram relocation. We can simply specify the absolute address for whatever
program is first loaded. Most often, this program will be the operating system,
which occupies a predefined location in memory. This means that we need

165

166

System Software

some means of accomplishing the functions of an absolute loader. Some early
computers required the operator to enter into memory the object code for an
absolute loader, using switches on the computer console. However, this
process is much too inconvenient and error-prone to be a good solution to the
problem.

On some computers, an absolute loader program is permanently resident
in a read-only memory (ROM). When some hardware signal occurs (for exam-
ple, the operator pressing a “system start” switch), the machine begins to exe-
cute this ROM program. On some computers, the program is executed directly
in the ROM; on others, the program is copied from ROM to main memory and
executed there. However, some machines do not have such read-only storage.
In addition, it can be inconvenient to change a ROM program if modifications
in the absolute loader are required.

An intermediate solution is to have a built-in hardware function (or a very
short ROM program) that reads a fixed-length record from some device into
memory at a fixed location. The particular device to be used can often be
selected via console switches. After the read operation is complete, control is
automatically transferred to the address in memory where the record was
stored. This record contains machine instructions that load the absolute pro-
gram that follows. If the loading process requires more instructions than can
be read in a single record, this first record causes the reading of others, and
these in turn can cause the reading of still more records—hence the term boot-
strap. The first record (or records) is generally referred to as a bootstrap loader.
(A simple example of such a bootstrap loader was given in Section 3.1.2.) Such
a loader is added to the beginning of all object programs that are to be loaded
into an empty and idle system. This includes, for example, the operating sys-
tem itself and all stand-alone programs that are to be run without an operating
system.

3.5 IMPLEMENTATION EXAMPLES

In this section we briefly examine linkers and loaders for actual computers. As
in our previous discussions, we make no attempt to give a full description of
the linkers and loaders used as examples. Instead we concentrate on any par-
ticularly interesting or unusual features, and on differences between these
implementations and the more general model discussed earlier in this chapter.
We also point out areas in which the linker or loader design is related to the
assembler design or to the architecture and characteristics of the machine.

The loader and linker examples we discuss are for the Pentium, SPARC,
and T3E architectures. You may want to review the descriptions of these archi-
tectures in Chapter 1, and the related assembler examples in Section 2.5.

Loaders and Linkers

3.5.1 MS-DOS Linker

This section describes some of the features of the Microsoft MS-DOS linker for
Pentium and other x86 systems. Further information can be found in Simrin
(1991) and Microscft (1988).

Most MS-DOS compilers and assemblers (including MASM) produce
object modules, not executable machine language programs. By convention,
these object modules have the file name extension .OBJ. Each object module
contains a binary image of the translated instructions and data of the program.
It also describes the structure of the program (for example, the grouping of
segments and the use of external references in the program).

MS-DOS LINK is a linkage editor that combines one or more object mod-
ules to produce a complete executable program. By convention, this exe-
cutable program has the file name extension .EXE. LINK can also combine the
translated programs with other modules from object code libraries, as we dis-
cussed previously.

Figure 3.17 illustrates a typical MS-DOS object module. There are also sev-

eral other possible record types (such as comment records), and there is some-

flexibility in the order of the records.

The THEADR record specifies the name of the object module. The MOD-
END record marks the end of the module, and can contain a reference to
the entry point of the program. These two records generally correspond to the
Header and End records we discussed for SIC/XE.

Record types Description
THEADR Translator header
TYPDEF

. PUBDEF External symbols and references
EXTDEF
LNAMES
SEGDEF Segment definition and grouping
GRPDEF
LEDATA .

T i d

LIDATA } ranslated instructions and data
FIXUPP Relocation and linking information
MODEND End of object module

Figure 3.17 MS-DOS object module.

167

168

System Software

The PUBDEF record contains a list of the external symbols (called public
names) that are defined in this object module. The EXTDEF record contains a
list of the external symbols that are referred to in this object module. These
records are similar in function to the SIC/XE Define and Refer records. Both
PUBDEF and EXTDEF can contain information about the data type designated
by an external name. These types are defined in the TYPDEF record.

SEGDEEF records describe the segments in the object module, including
their name, length, and alignment. GRPDEF records specify how these seg-
ments are combined into groups. (See Section 2.5.1 for a discussion of the use
of segmentation in the MASM assembler.) The LNAMES record contains a list
of all the segment and class names used in the program. SEGDEF and
GRPDEEF records refer to a segment by giving the position of its name in the
LNAMES record. (This approach to specifying names is similar to the “refer-
ence number” technique described near the end of Section 3.2.3.)

LEDATA records contain translated instructions and data from the source
program, similar to the SIC/XE Text record. LIDATA records specify
translated instructions and data that occur in a repeating pattern. (See
Exercise 2.1.7.)

FIXUPP records are used to resolve external references, and to carry out
address modifications that are associated with relocation and grouping of seg-
ments within the program. This is similar to the function performed by the
SIC/XE Modification records. However, FIXUPP records are substantially
more complex, because of the more complicated object program structure. A .
FIXUPP record must immediately follow the LEDATA or LIDATA record to
which it applies.

LINK performs its processing in two passes, following a similar approach
to that described in Section 3.2.3. Pass 1 computes a starting address for each
segment in the program. In general, segments are placed into the executable
program in the same order that the SEGDEF records are processed. However,
in some cases segments from different object modules that have the same seg-
ment name and class are combined. Segments with the same class, but differ-
ent names, are concatenated. The starting address initially associated with a
segment is updated during Pass 1 as these combinations and concatenations
are performed.

Pass 1 constructs a symbol table that associates an address with each seg-
ment (using the LNAMES, SEGDEF, and GRPDEF records) and each external
symbol (using the EXTDEF and PUBDEEF records). If unresolved external sym-
bols remain after all object modules have been processed, LINK searches the
specified libraries as described in Section 3.3.1.

During Pass 2, LINK extracts the translated instructions and data from the
object modules, and builds an image of the executable program in memory.

Loaders and Linkers

It does this because the executable program is organized by segment, not by
the order of the object modules. Building a memory image is the most efficient

way 'to handle the rearrangements caused by combining and concatenating
segments. If there is not enough memory available to contain the entire exe-
cutable image, LINK uses a temporary disk file in addition to all of the avail-
able memory.

Pass 2 of LINK processes each LEDATA and LIDATA record along with the
corresponding FIXUPP record (if there is one). It places the binary data from
LEDATA and LIDATA records into the memory image at locations that reflect
the segment addresses computed during Pass 1. (Repeated data specified in
LIDATA records is expanded at this time.) Relocations within a segment
(caused by combining or grouping segments) are performed, and external ref-
erences are resolved. Relocation operations that involve the starting address of
a segment are added to a table of segment fixups. This table is used to perform
relocations that reflect the actual segment addresses when the program is
loaded for execution. ‘

After the memory image is complete, LINK writes it to the executable
(.EXE) file. This file also includes a header that contains the table of segment
fixups, information about memory requirements and entry points, and the ini-
tial contents for registers CS and SP.

3.5.2 SunOS Linkers

This section describes some of the features of the SunOS linkers for SPARC
systems. Further information can be found in Sun Microsystems (1994b).

SunOS actually provides two different linkers, called the link-editor and the
run-time linker. The link-editor is most commonly invoked in the process of
compiling a program. It takes one or more object modules produced by assem-
blers and compilers, and combines them to produce a single output module.
This output module may be one of the following types:

1. Arelocatable object module, suitable for further link-editing.

2. A static executable, with all symbolic references bound and ready to
run.

3. Adynamic executable, in which some symbolic references may need to
be bound at run time.

4. A shared object, which provides services that can be bound at run time
to one or more dynamic executables.

169

170

System Software

An object module contains one or more sections, which represent the
instructions and data areas from the source program. Each section has a set of
attributes, such as “executable” and “writeable.” (See Section 2.5.2 for a
discussion of how sections are defined in an assembler language program.)
The object module also includes a list of the relocation and linking operations
that need to be performed, and a symbol table that describes the symbols used
in these operations.

The SunOS link-editor begins by reading the object modules (or other files)
that are presented to it to process. Sections from the input files that have the
same attributes are concatenated to form new sections within the output file.
The symbol tables from the input files are processed to match symbol defini-
tions and references, and relocation and linking operations within the output
file are performed. The linker normally generates a new symbol table, and a
new set of relocation instructions, within the output file. These represent sym-
bols that must be bound at run time, and relocations that must be performed
when the program is loaded.

Relocation and linking operations are specified using a set of processor-
specific codes. These codes describe the size of the field that is to be modified,
and the calculation that must be performed. Thus, the set of codes reflects the
instruction formats and addressing modes that are found on a particular
machine. For example, there are 24 different relocation codes that are used on
SPARC systems. SunOS linker implementations on x86 systems use a different
set of 11 codes.

Symbolic references from the input files that do not have matching’ defini-
tions are processed by referring to archives and shared objects. An archive is a
collection of relocatable object modules. A directory stored with the archive
associates symbol names with the object modules that contain their defini-
tions. Selected modules from an archive are automatically included to resolve
symbolic references, as described in Section 3.3.1.

A shared object is an indivisible unit that was generated by a previous
link-edit operation. When the link-editor encounters a reference to a symbol
defined in a shared object, the entire contents of the shared object become
a logical part of the output file. All symbols defined in the object are
made available to the link-editing process. However, the shared object is not
physically included in the output file. Instead, the link-editor records the
dependency on the shared object. The actual inclusion of the shared object
is deferred until run time. (This is an example of the dynamic linking
approach we discussed in Section 3.4.2. In this case, the use of dynamic linking
allows several executing programs to share one copy of a shared object.)

The SunOS run-time linker is used to bind dynamic executables and
shared objects at execution time. The linker determines what shared objects

Loaders and Linkers

are required by the dynamic executable, and ensures that these objects are
included. It also inspects the shared objects to detect and process any addi-
tional dependencies on other shared objects.

After it locates and includes the necessary shared objects, the linker per-
forms relocation and linking operations to prepare the program for execution.
These operations are specified in the relocation and linking sections of the
dynamic executable and shared objects. They bind symbols to the actual mem-
ory addresses at which the segments are loaded. Binding of data references is
performed before control is passed to the executable program. Binding of pro-
cedure calls is normally deferred until the program is in execution. During
link-editing, calls to globally defined procedures are converted to references to
a procedure linkage table. When a procedure is called for the first time, control
is passed via this table to the run-time linker. The linker looks up the actual
address of the called procedure and inserts it into the linkage table. Thus sub-
sequent calls will go directly to the called procedure, without intervention by
the linker. This process is sometimes referred to as lazy binding.

The run-time linker also provides an additional level of flexibility. During
execution, a program can dynamically bind to new shared objects by request-
ing the same services of the linker that we have just described. This feature
allows a program to choose between a number of shared objects, depending
on the exact services required. It also reduces the amount of overhead required
for starting a program. If a shared object is not needed during a particular run,
it is not necessary to bind it at all. These advantages are similar to those that
we discussed for dynamic linking in Section 3.4.2.

3.5.3 Cray MPP Linker

This section describes some of the features of the MPP linker for Cray T3E sys-
tems. Further information can be found in Cray Research (1995b).

As we discussed in Chapter 1, a T3E system contains a large number of
processing elements (PEs). Each PE has its own local memory. In addition, any
PE can access the memory of all other PEs (this is sometimes referred to as
remote memory). However, the fastest access time always results from a PE
accessing its own local memory.

An application program on a T3E system is normally allocated a partition
that consists of several PEs. (It is possible to run a program in a partition of
one PE, but this does not take advantage of the parallel architecture of the
machine.) The work to be done by the program is divided between the PEs
in the partition. One common method for doing this is to distribute the ele-
ments of an array among the PEs. For example, if a partition consists of

171

172

System Software

PEO ' PE1 PE15
Al1] A[17] A[241]
Al2] A[18] A[242]
Al3] A[19] o A[243]
A[16] A[32] A[256]

Figure 3.18 Example of data shared between PEs.

16 PEs, the elements of a one-dimensional array might be distributed as
shown in Fig. 3.18.

The processing of such an array can’ also be divided among the PEs.
Suppose, for example, that the program contains a loop that processes all 256
array elements. PEQ could execute this loop for subscripts 1 through 16, PE1
could execute the loop for subscripts 17 through 32, and so on. In this way,
all of the PEs would share in the array processing, with each PE handling the
array elements from its own local memory. Section 6.5.4 discusses some of
the operating system functions that are used to support the parallel opera-
tion of PEs. '

Data that is divided among a number of PEs, as in the example just dis-
cussed, is called shared data. Data that is not shared in this way is called private
data. In most cases, private data is replicated on each PE in the partition—that
is, each PE has its own copy. It is also possible for a PE to have private data
items that exist only in its own local memory.

When a program is loaded, each PE gets a copy of the executable code for
the program, its private data, and its portion of the shared data. There are a
number of possible arrangements of these items, but the overall situation can
be visualized as shown in Fig. 3.19. In this diagram, shared data-i indicates the
portion of the shared data that is assigned to PEi.

The MPP linker organizes blocks of code or data from the object
programs into lists. The blocks on a given list all share some common
property—for example, executable code, private data, or shared data. The
blocks on each list are collected together, an address is assigned to each
block, and relocation and linking operations are performed. The linker then

Loaders and Linkers 173

PEO PE1 PEn
Code Code Code
Private Private Private
data data data
Shared Shared Shared
data-0 data-1 data-n

Figure 3.19 T3E program loaded on multipie PEs.

writes an executable file that contains the relocated and linked blocks. This
executable file also specifies the number of PEs required and other control
information.

Notice that the distribution of shared data depends on the number of PEs
in the partition. For example, if the partition in Fig. 3.18 contained only 8 PEs,
each PE would receive 32 elements of the shared array. If the number of
PEs in the partition is specified at compile time, it cannot be overridden
later. If the partition size is not specified at compile time, there are two
possibilities. The linker can create an executable file that is targeted for a
fixed number of PEs, or one that allows the partition size to be chosen at
run time. This latter type is called a plastic executable. A plastic executable
file must contain a copy of all relocatable object modules, and all linker
directives that are needed to produce the final executable. Thus, a plastic
executable is often considerably larger than one targeted for a fixed number
of PEs.

EXERCISES

Section 3.1

1. Define a binary object program format for SIC and write an absolute
loader (in SIC assembler language) to load programs in this format.

2. Describe a method for performing the packing required when load-
ing an object program such as that in Fig. 3.1(a), which uses character

174

System Software

representation of assembled code. How could you implement this
method in SIC assembler language?

What would be the advantages and disadvantages of writing a
loader using a high-level programming language? What problems
might you encounter, and how might these be solved?

3.2 Section Exercises

1.

Modify the algorithm given in Fig. 3.13 to use the bit-mask approach to
relocation. Linking will still be performed using Modification records.

Suppose that a computer primarily uses direct addressing, but has
several different instruction formats. What problems does this create
for the relocation-bit approach to program relocation? How might
these problems be solved?

Apply the algorithm described in Fig. 3.13 to link and load the object
programs in Fig. 3.11. Compare your results with those shown in
Fig. 3.12.

Assume that PROGA, PROGB, and PROGC are the same as in
Fig. 3.10. Show how the object programs would change (including
Text and Modification records) if the following statements were
added to each program:

REF9 WORD ~ LISTC
REF10 WORD LISTB-3

REF11 WORD LISTA+LISTB

REF12 WORD ENDC-LISTC-100

REF13 WORD LISTA-LISTB-ENDA+ENDB

Apply the algorithm described in Fig. 3.13 to link and load the
revised object programs you generated in Exercise 4.

Using the methods outlined in Chapter 8, develop a modular design
for a relocating and linking loader.

Extend the algorithm in Fig. 3.13 to include the detection of improper
external reference expressions as suggested in the text. (See
Section 2.3.5 for the set of rules to be applied.) What problems arise
in performing this kind of error checking?

Modify the. algorithm in Fig. 3.13 to use the reference-number tech-
nique for code modification that is described in Section 3.2.3.

9.

10.

11.

12.

Loaders and Linkers

Suppose that you are implementing an assembler and loader and
want to allow absolute-valued external symbols. For example, one
control section might contain the statements

EXTDEF MAXLEN

MAXLEN EQU 4096

and other control sections could refer to the value of MAXLEN as an
external symbol. Describe a way of implementing this new feature,
including any needed changes in the loader logic and object program
format.

Suppose that you have been given the task of writing an
“unloader”—that is, a piece of software that can take the image of a
program that has been loaded and write out an object program that
could later be loaded and executed. The computer system uses a
relocating loader, so the object program you produce must be capa-
ble of being loaded at a location in memory that is different from
where your unloader took it. What problems do you see that would
prevent you from accomplishing this task?

Suppose that you are given two images of a program as it would
appear after loading at two different locations in memory. Assume
that the images represent the program after it is loaded and relocated,
but before any of the program’s instructions are actually executed.
Describe how this information could be used to accomplish the
“unloading” task mentioned in Exercise 10.

Some loaders have used an indirect linking scheme. To use such a
technique with SIC/XE, the assembler would generate a list of
pointer words from the EXTREF directive (one pointer word for each
external reference symbol). Modification records would direct the
loader to insert the external symbol addresses into the corresponding
words in the pointer list. External references would then be accom-
plished with indirect addressing using these pointers. Thus, for
example, an instruction like

LDA XYZ

(where XYZ is an external reference) would be assembled as if it
were

LDA @PXYZ

175

176

System Software

13.

14.

15.

16.

where PXYZ is the pcinter word containing the address of XYZ.
What would be the advantages and disadvantages of using such a
method? .

Suggest a desigr: for a one-pass linking loader. What restrictions (if
any) would be required? What would be the advantages and disad-
vantages of such a one-pass loader?

Some programming languages allow data items to be placed in com-
mon areas. There may be more than one common area (with different
names) in a source program. We may think of each common area as
being a separate control section in the object program.

When object programs are linked and loaded, all of the common
areas with the same name are assigned the same starting address in
memory. (These common areas may be of different lengths in the dif-
ferent programs declaring them.) This assignment of memory estab-
lishes an equivalence between the variables that were declared in
common by the different programs. Any data value stored into a
common area by one program is thus available to the others.

How might the loader handle such common areas? (Suggest modifi-
cations to the algorithm of Fig. 3.13 that will perform the necessary
processing.)

Suppose that you have a one-pass assembler that produces object
code directly in memory, as described in Section 2.4. This assembler
was designed to assemble and run only one control section. Now
you want to change it so that it can assemble and run a program that
consists of several different control sections (as illustrated in
Fig. 2.15).

Describe the changes you would make to implement this new capa-
bility. Your modified assembler should still run in one pass, and
should still produce object code in memory, without using any other
files.

Suppose that a relocatable SIC/XE program is to be loaded in three
different parts. One part contains the assembled instructions of the
program (LDA, JSUB, etc.). Another part contains the data variables
used in the program (which are defined by RESW, RESB, BYTE, and
WORD). The third part contains data constants (which are defined
by a new assembler directive named CONST).

17.

Loaders and Linkers

Constants

Object program

H
TI...

TI...
TC. ..

™. ..
TI... ™
E

Executable instructions

v

Variables

In the object program, the assembled instructions are contained in
type TI records, the variables in type TV records, and the constants
in type TC records. (These new record types take the place of the nor-
mal Text records in the object program.) The three parts of the object
program will be loaded into separate arcas of memory, as illustrated
above. The starting address for each of the three segments of the
program will be supplied to the loader at the time the program is
being loaded.

Describe how the assembler could separate the object program into
TI, TV, and TC records as described above. Describe how the
loader would use the information in these records in loading the
program.

Consider an extended version of SIC/XE that has a new register R.
The contents of R cannot be accessed or changed by the user pro-
gram. When a program is loaded, however, the loader sets register R
so that it contains the starting address of the program. For simplicity,
assume that this version of SIC has no program-counter or base rela-
tive addressing—thus, all instructions that refer to memory must use
Format 4.

Each time the program refers to an address in memory, the contents of
register R are automatically added into the target address calculation.

178

System Software

Suppose, for example, that an assembled instruction specifies an
address of 800 (hexadecimal). If R contains 5000, executing this
instruction would actually refer to memory address 5800. If R con-
tains 8000, executing the same instruction would actually refer to
memory address 8800.

Consider the control sections shown in Fig. 3.10. Assume that these
control sections are being loaded and linked at the addresses shown
in Fig. 3.12; thus the loader will set register R to the value 4000. What
value should appear in the External Symbol Table of the loader for
the symbol LISTB? What should the instruction labeled REF2 in con-
trol section PROGC look like after all loading and linking operations
have been performed?

Section 3.3

1. Modify the algorithm in Fig. 3.13 to include automatic library search

to resolve external references. You may assume that the details of
library access are handled by operating system service routines.

. Modify the algorithm in Fig. 3.13 to implement CHANGE, DELETE,

and INCLUDE directives as described in Section 3.3.2. If you need to
place any restrictions on the use of these commands, be sure to state
what they are.

. Suppose that the loader is to produce a listing that shows not only

the addresses assigned to external symbols, but also the cross-refer-
ences between control sections in the program being loaded. What
information might be useful in such a listing? Briefly describe how
you might implement this feature and include a description of any
data structures needed.

Section 3.4

1. Define a module format suitable for representing linked programs

produced by a linkage editor. Assume that the linked program is not
to be reprocessed by the linkage editor. Describe an algorithm for a
relocating loader that would be suitable for the loading of linked
programs in this format.

2.

Loaders and Linkers

Define a module format suitable for representing linked programs
produced by a linkage editor. This fermat should allow for the load-
ing of the linked program by a one-pass relocating loader, as in
Exercise 1. However, it should also allow for the linked program to
be reprocessed by the linkage editor. Describe how your format
allows for both one-pass loading and relinking,.

Consider the following possibilities tor the storage, linking, and exe-
cution of a user’s program:

a. Store the source program only; reassemble the program and use a
linking loader each time it is to be executed.

b. Store the source and object versions of the program; use a linking
loader each time the program is to be executed.

c. Store the source program and the linked version with external ref-
erences to library subroutines left unresolved. Use a linking
loader each time the program is to be executed.

d. Store the source program and the linked version with all external
references resolved. Use a relocating loader each time the pro-
gram is to be executed.

e. Store the source program and a linked version that has all exter-
nal references resolved and all relocation performed. Use an
absolute loader each time the program is to be executed.

Under what claitions might cach ol these approaches be appropri-
ate? Assume that no changes are required in the source program
from one execution to the next.

Dynamic linking, as described in Section 3.4.2, works for transfers of
control only. How could the implementation be extended so that
data references could also cause dynamic loading to occur?

Suppose that routines that are brought into memory by dynamic
loading need not be removed until the termination of the main pro-
gram. Suggest a way to improve the efficiency of dynamic linking by
making it unnecessary for the operating system to be involved in the
transfer of control after the routine is loaded. '

Suppose that it may be necessary to remove from memory routines
that were dynamically loaded (to reuse the space). Will the method
that you suggested in Exercise 5 still work? What problems arise,
and how might they be solved?

179

180 System Software

7. What kinds of errors might occur during bootstrap loading? What
action should the bootstrap loader take for such errors? Modify the
SIC/XE bootstrap loader shown in Fig. 3.3 to include such error
checking.

8. Compose merits and demerits of all the loading schemes.

Section 3.5

1. Consider the description of the VAX architecture in Section 1.4.1.
What characteristics would you expect to find in a VAX linker and
loader?

2. Consider the description of the PowerPC architecture in
Section 1.5.2, and the description of the PowerPC assembler in
Section 2.5.3. What characteristics would you expect to find in a
PowerPC linker and loader?

Chapter 4

Macro Processors

In this chapter we study the design and implementation of macro processors.
A macro instruction (often abbreviated to macro) is simply a notational conve-
nience for the programmer. A macro represents a commonly used group of
statements in the source programming language. The macro processor
replaces each macro instruction with the corresponding group of source lan-
guage statements. This is called expanding the macros. Thus macro instructions
allow the programmer to write a shorthand version of a program, and leave
the mechanical details to be handled by the macro processor.

For example, suppose that it is necessary to save the contents of all registers
before calling a subprogram. On SIC/XE, this would require a sequence of
seven instructions (STA, STB, etc.). Using a macro instruction, the programmer
could simply write one statement like SAVEREGS. This macro instruction
would be expanded into the seven assembler language instructions needed to
save the register contents. A similar macro instruction (perhaps named LOAD-
REGS) could be used to reload the register contents after returning from the
subprogram.

The functions of a macro processor essentially involve the substitution of
one group of characters or lines for another. Except in a few specialized cases,
the macro processor performs no analysis of the text it handles. The design
and capabilities of a macro processor may be influenced by the form of the
programming language statements involved. However, the meaning of these
statements, and their translation into machine language, are of no concern
whatsoever during macro expansion. This means that the design of a macro
processor is not directly related to the architecture of the computer on which it
is to run.

The most common use of macro processors is in assembler language
programming. We use SIC assembler language examples to illustrate most of
the concepts being discussed. However, macro processors can also be used
with high-level programming languages, operating system command
languages, etc. In addition, there are general-purpose macro processors that
are not tied to any particular language. In the later sections of this chapter, we
briefly discuss these more general uses of macros.

181

182

System Software

Section 4.1 introduces the basic concepts of macro processing, including
macro definition and expansion. We also present an algorithm for a simple
macro processor. Section 4.2 discusses extended features that are commonly
found in macro processors. These features include the generation of ﬁnique
labels within macro expansions, conditional macro expansion, and the use of
keyword parameters in macros. All these features are machine-independent.
Because the macro processor is not directly related to machine architecture,
this chapter contains no section on machine-dependent features.

Section 4.3 describes some macro processor design options. One of these
options (recursive macro expansion) involves the internal structure of the
macro processor itself. The other options are concerned with how the macro
processor is related to other picces of svstem software such as assemblers or
compilers.

Finally, Section 4.4 briefly presents three examples of actual macro processors.
One of these is a macro processor designed for use by assembler language
programmers. Another is intended to be used with a high-level programming
language. The third is a general-purpose macro processor, which is not tied to
any particular language. Additional examples may be found in the references
cited throughout this chapter.

4.1 BASIC MACRO PROCESSOR FUNCTIONS

In this section we examine the fundamental functions that are common to all
macro processors. Section 4.1.1 discusses the processes of macro definition,
invocation, and expansion with substitution of parameters. These functions are
illustrated with examples using the SIC/XF assembler language. Section 4.1.2
presents a one-pass algorithm for a simple macro processor together with a
description of the data structures needed for macro processing. Later sections
in this chapter discuss extensions to the basic capabilities introduced in this
section. .

4.1.1 Macro Definition and Expansion

Figure 4.1 shows an example of a SIC/XE program using macro instructions.
This program has the same functions and logic as the sample program in Fig. 2.5;
however, the numbering scheme used for the source statements has been
changed.

This program defines and uses two macro instructions, RDBUFF and
WRBUFF. The functions and logic of the RDBUFF macro are similar to those of
the RDREC subroutine in Fig. 2.5; likewise, the WRBUFF macro is similar

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
190
195
200
205
210
215
220
225
230
235
240
245
250
255

Line

COPY
RDBUFF

WRBUFF

FIRST
CLOOP

ENDFIL

EOF
THREE
RETADR
LENGTH
BUFFER

Source statement

START
MACRO

MACRO

CLEAR
CLEAR
CLEAR
+LDT
TD
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
STX
MEND
MACRO

MACRO

CLEAR
LDT
LDCH
D
JEQ
WD
TIXR
JLT
MEND

0

Macro Processors 183

COPY FILE FROM INPUT TO OUTPUT

&INDEV, &BUFADR, &RECLTH

TO READ RECORD INTO BUFFER

X

A

S
#4096
=X'&INDEV’
*-3
=X'&INDEV’
A,S

*+11
&BUFADR, X
T

* 19
&RECLTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

&OUTDEV, &BUFADR, &RECLTH

TO WRITE RECORD FROM BUFFER

X

&RECLTH
&BUFADR, X
=X’ &OUTDEV’
-3
=X’ &OUTDEV"
T

*-14

MAIN PROGRAM

STL

RDBUFF

LDA
COMP
JEQ

WRBUFF

J

WRBUFF

J
BYTE
WORD
RESW
RESW
RESB
END

RETADR

CLEAR LOOP COUNTER

GET CHARACTER FROM BUFFER

TEST OUTPUT DEVICE

LOOP UNTIL READY

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

SAVE RETURN ADDRESS

F1,BUFFER, LENGTH READ RECORD INTO BUFFER

LENGTH
#0
ENDFIL

TEST FOR END OF FILE

EXIT IF EOF FOUND

05, BUFFER, LENGTH WRITE OUTPUT RECORD

CLOOP

05, EOF, THREE

@RETADR
C'EOF’
3
1
1
4096
FIRSTZ

LOOP
INSERT EOF MARKER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

Figure 4.1 Use of macros in a SIC/XE program.

184

System Softivare

to the WRREC subroutine. The definitions of these macro instructions appear
in the source program following the START statement.

Two new assembler directives (MACRO and MEND) are used in macro
definitions. The first MACRO statement (line 10) identifies the beginning of a
macro definition. The symbol in the label field (RDBUFF) is the name of the
macro, and the entries in the operand field identify the parameters of the macro
instruction. In our macro language, each parameter begins with the character &,
which facilitates the substitution of parameters during macro expansion. The
macro name and parameters define a pattern or prototype for the macro
instructions used by the programmer. Following the MACRO directive are the
statements that make up the body of the macro definition (lines 15 through 90).
These are the statements that will be generated as the expansion of the macro.
The MEND assembler directive (line 95) marks the end of the macro defini-
tion. The definition of the WRBUFF macro (lines 100 through 160) follows a
similar pattern. ‘

The main program itself begins on line 180. The statement on line 190 is a
macro invocation statement that gives the name of the macro instruction being
invoked and the arguments to be used in expanding the macro. (A macro invo-
cation statement is often referred to as a macro call. To avoid confusion with the
call statements used for procedures and subroutines, we prefer to use the term
invocation. As we shall see, the processes of macro invocation and subroutine
call are quite different.) You should compare the logic of the main program in
Fig. 4.1 with that of the main program in Fig. 2.5, remembering the similarities
in function between RDBUFF and RDREC and between WRBUFF and
WRREC.

The program in Fig. 4.1 could be supplied as input to a macro processor.
Figure 4.2 shows the output that would be generated. The macro instruction
definitions have been deleted since they are no longer needed after the macros
are expanded. Each macro invocation statement has been expanded into
the statements that form the body of the macro, with the arguments from the
macro invocation substituted for the parameters in the macro prototype. The
arguments and parameters are associated with one another according to their
positions. The first argument in the macro invocation corresponds to the first
parameter in the macro prototype, and so on. In expanding the macro invocation
on line 190, for example, the argument F1 is substituted for the parameter
&INDEV wherever it occurs in the body of the macro. Similarly, BUFFER is
substituted for &BUFADR, and LENGTH is substituted for &RECLTH.

Lines 190a through 190m show the complete expansion of the macro invo-
cation on line 190. The comment lines within the macro body have been
deleted, but comments on individual statements have been retained. Note that
the macro invocation statement itself has been included as a comment line.
This serves as documentation of the statement written by the programmer.

Line

5
180
190
190a
190b
190c
1904
190e
190f
190g
190h
1901
1903
190k
1901
190m
195
200
205
210
210a
210b
210c
2104
210e
210f
210g
210h
215
220
220a
220b
220c
220d
220e
220f
220g
220h
225
230
235
240
245
250
255

Source statement

COPY START 0
FIRST STL RETADR
.CLOOP RDBUFF F1, BUFFER, LENGTH
CLOOP CLEAR X
CLEAR A
CLEAR S
+LDT #4096
TD =X'Fl’
JEQ *-3
RD =X'F1l’
COMPR A,S
JEQ *+11
STCH BUFFER, X
TIXR T
JLT *-19
STX LENGTH
LDA LENGTH
COMP #0
JEQ ENDFIL
WRBUFF 05, BUFFER, LENGTH
CLEAR X
LDT LENGTH
LDCH BUFFER, X
TD =X'05"
JEQ *-3
WD =X'05"
TIXR T
JLT *-14
J CLOOP
.ENDFIL WRBUFF 05, EOF, THREE
ENDFIL CLEAR X
LDT THREE
LDCH EOF, X
TD =X'05"
JEQ *-3
WD =X'05"
TIXR T
JLT *-14
J @RETADR
EOF BYTE C'EOF’
THREE WORD 3
RETADR RESW 1
LENGTH RESW 1
BUFFER RESB 4096
END FIRST

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS

READ RECORD INTO BUFFER

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

TEST FOR END OF FILE

EXIT IF EOF FOUND
WRITE OUTPUT RECORD
CLEAR LOOP COUNTER

GET CHARACTER FROM BUFFER

TEST OUTPUT DEVICE

LOOP UNTIL READY

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

LOOP

INSERT EOF MARKER

CLEAR LOOP COUNTER

GET CHARACTER FROM BUFFER

TEST OUTPUT DEVICE

LOOP UNTIL READY

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

LENGTH OF RECORD
4096-BYTE BUFFER AREA

Figure 4.2 Program from Fig. 4.1 with macros expanded.

186

System Software

The label on the macro invocation statement (CLOOP) has been retained as a
label on the first statement generated in the macro expansion. This allows the
programmer to use a macro instruction in exactly the same way as an assem-
bler language mnemonic. The macro invocations on lines 210 and 220 are
expanded in the same way. Note that the two invocations of WRBUFF specify
different arguments, so they produce different expansions.

After macro processing, the expanded file (Fig. 4.2) can be used as input to
the assembler. The macro invocation statements will be treated as comments,
and the statements generated from the macro expansions will be assembled
exactly as though they had been written directly by the programmer.

A comparison of the expanded program in Fig. 4.2 with the program in
Fig. 2.5 shows the most significant differences between macro invocation
and subroutine call. In Fig. 4.2, the statements from the body of the macro
WRBUFF are generated twice: lines 210a through 210h and lines 220a through
220h. In the program of Fig. 2.5, the corresponding statements appear only
once: in the subroutine WRREC (lines 210 through 240). In general, the state-
ments that form the expansion of a macro are generated (and assembled) each
time the macro is invoked. Statements in a subroutine appear only once,
regardless of how many times the subroutine is called.

Note also that our macro instructions have been written so that the body of
the macro contains no labels. In Fig. 4.1, for example, line 140 contains the state-
ment “JEQ *-3" and line 155 contains “JLT *~14.” The corresponding statements
in the WRREC subroutine (Fig. 2.5) are “JEQ WLOOP” and “JLT WLOOP,”
where WLOOP is a label on the TD instruction that tests the output device. If
such a label appeared on line 135 of the macro body, it would be generated
twice—on lines 210d and 220d of Fig. 4.2. This would result in an error (a dupli-
cate label definition) when the program is assembled. To avoid duplication of
symbols, we have eliminated labels from the body of our macro definitions.

The use of statements like “JLT *-14” is generally considered to be a poor
programming practice. It is somewhat less objectionable within a macro defin-
ition; however, it is still an inconvenient and error-prone method. In
Section 4.2.2 we discuss ways of avoiding this problem.

4.1.2 Macro Processor Algorithm and Data Structures

It is easy to design a two-pass macro processor in which all macro definitions
are processed during the first pass, and all macro invocation statements are
expanded during the second pass. However, such a two-pass macro processor
would not allow the body of one macro instruction to contain definitions of
other macros (because all macros would have to be defined during the first
pass before any macro invocations were expanded).

Macro Processors 187

Such definitions of macros by other macros can be useful in certain cases.
Consider, for example, the two macro instruction definitions in Fig. 4.3. The
body of the first macro (MACROS) contains statements that define RDBUFF,
WRBUFF, and other macro instructions for a SIC system (standard version).
The body of the second macro instruction (MACROX) defines these same
macros for a SIC/XE system. A program that is to be run on a standard SIC
system could invoke MACROS to define the other utility macro instructions. A
program for a SIC/XE system could invoke MACROX to define these same
macros in their XE versions. In this way, the same program could run on either
a standard SIC machine or a SIC/XE machine (taking advantage of the

1 MACROS MACRO {Defines SIC standard version macros}
2 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH-
. {SIC standard version}
3 MEND {End of RDBUFF}
4 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH
{SIC standard version}
5 MEIND {End of WRBUFF}
6 MEND {End of MACROS}
(a)
1 MACROX MACRO {Defines SIC/XE macros}
2 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH
{SIC/XE version}
3 MEND {End of RDBUFF}
4 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH
{SIC/XE version}
5 MEND (End of WRBUFF)
6 MEIND {End of MACROX}

(b)

Figure 4.3 Example of the definition of macros within a macro body.

188

System Software

extended features). The only change required would be the invocation of
either MACROS or MACROX. It is important to understand that defining
MACROS or MACROX does not define RDBUFF and the other macro instruc-
tions. These definitions are processed only when an invocation of MACROS or
MACROX is expanded.

A one-pass macro processor that can alternate between macro definition
and macro expansion is able to handle macros like those in Fig. 4.3. In this sec-
tion we present an algorithm and a set of data structures for such a macro
processor. Because of the one-pass structure, the definition of a macro must
appear in the source program before any statements that invoke that macro.
This restriction does not create any real inconvenience for the programmer. In
fact, a macro invocation statement that preceded the definition of the macro
would be confusing for anyone reading the program.

There are three main data structures involved in our macro processor. The
macro definitions themselves are stored in a definition table (DEFTAB), which
contains the macro prototype and the statements that make up the macro body
(with a few modifications). Comment lines from the macro definition are not
entered into DEFTAB because they will not be part of the macro expansion.
References to the macro instruction parameters are converted to a positional
notation for efficiency in substituting arguments. The macro names are also
entered into NAMTAB, which serves as an index to DEFTAB. For each macro
instruction defined, NAMTAB contains pointers to the beginning and end of
the definition in DEFTAB.

The third data structure is an argument table (ARGTAB), which is used
during the expansion of macro invocations. When a macro invocation state-
ment is recognized, the arguments are stored in ARGTAB according to their
position in the argument list. As the macro is expanded, arguments from
ARGTAB are substituted for the corresponding parameters in the macro body.

Figure 4.4 shows portions of the contents of these tables during the process-
ing of the program in Fig. 4.1. Figure 4.4(a) shows the definition of
RDBUFF stored in DEFTAB, with an entry in NAMTARB identifying the begin-
ning and end of the definition. Note the positional notation that has been used
for the parameters: the parameter &INDEV has been converted to ?1 (indicating
the first parameter in the prototype), &BUFADR has been converted to ?2, and
so on. Figure 4.4(b) shows ARGTAB as it would appear during expansion of the
RDBUFF statement on line 190. For this invocation, the first argument is F1, the
second is BUFFER, etc. This scheme makes substitution of macro arguments
much more efficient. When the ?n notation is recognized in a line from DEFTAB,
a simple indexing operation supplies the proper argument from ARGTAB.

The macro processor algorithm itself is presented in Fig. 4.5. The procedure
DEFINE, which is called when the beginning of a macro definition is recog-
nized, makes the appropriate entries in DEFTAB and NAMTAB. EXPAND is

